Universidad de Jaén

Menú local

Syllabus 2019-20 - 77012001 - Advanced Methods for the Analysis of Environmental Data (Métodos avanzados de análisis de datos ambientales)

Caption
  • Level 1: Tutorial support sessions, materials and exams in this language
  • Level 2: Tutorial support sessions, materials, exams and seminars in this language
  • Level 3: Tutorial support sessions, materials, exams, seminars and regular lectures in this language
DEGREE: Máster Univ. en Análisis, conservación y restauración de hábitats
FACULTY: Centro de Estudios de Postgrado
ACADEMIC YEAR: 2019-20
COURSE: Advanced Methods for the Analysis of Environmental Data
SYLLABUS
1. COURSE BASIC INFORMATION
NAME: Advanced Methods for the Analysis of Environmental Data
CODE: 77012001 ACADEMIC YEAR: 2019-20
LANGUAGE: English LEVEL: 1
ECTS CREDITS: 4.0 YEAR: 1 SEMESTER: PC
2. LECTURER BASIC INFORMATION
NAME: JIMÉNEZ MELERO, RAQUEL
DEPARTMENT: U102 - BIOLOGIA ANIMAL, BIOL.VEGETAL Y ECOLOGIA
FIELD OF STUDY: 220 - ECOLOGÍA
OFFICE NO.: B3 - 141 E-MAIL: rmelero@ujaen.es P: 953212794
WEBSITE: -
ORCID: https://orcid.org/0000-0003-3685-9995
LANGUAGE: - LEVEL: 1
NAME: JIMÉNEZ ESPINOSA, ROSARIO
DEPARTMENT: U117 - GEOLOGÍA
FIELD OF STUDY: 427 - GEODINÁMICA EXTERNA
OFFICE NO.: B3 - 332 E-MAIL: respino@ujaen.es P: -
WEBSITE: -
ORCID: https://orcid.org/0000-0002-7080-4405
LANGUAGE: - LEVEL: 1
NAME: MANZANEDA AVILA, ANTONIO JOSE
DEPARTMENT: U102 - BIOLOGIA ANIMAL, BIOL.VEGETAL Y ECOLOGIA
FIELD OF STUDY: 220 - ECOLOGÍA
OFFICE NO.: B3 - 156 E-MAIL: amavila@ujaen.es P: -
WEBSITE: -
ORCID: https://orcid.org/0000-0001-9384-7910
LANGUAGE: - LEVEL: 1
NAME: SERRANO CHICA, JOSÉ MARÍA
DEPARTMENT: U118 - INFORMÁTICA
FIELD OF STUDY: 075 - CIENCIA DE LA COMPUTACIÓN E INT. ARTIFICIAL
OFFICE NO.: A3 - 118 E-MAIL: jschica@ujaen.es P: 953212913
WEBSITE: https://www.ujaen.es/departamentos/dinformatica/contactos/serrano-chica-jose-maria
ORCID: https://orcid.org/0000-0001-5046-0724
LANGUAGE: - LEVEL: 1
3. CONTENT DESCRIPTION

  1. Experimental design . Importance of a good design. Hypothesis and predictions. Experimental manipulation versus natural variation. Variation between individuals and replication. Examples of experimental design. Data, observations and variables.
  2. Exploratory data analysis . Assumptions of parametric linear models. Outliers,  transformation and standardizations.  Censored and missing data
  3. Comparing groups or treatments. Types of Linear Models. Regression. Analysis of variance. Generalized linear models. Analyzing frequencies.
  4. Introduction to multivariate analyses . Multiple regression. Multivariate analysis of variance (MANOVA). Ordination and cluster analysis. Principal components analysis. Graphical representation and data visualization.

  5. Correspondence analysis. Canonical analysis. Discriminant analysis. Graphical representation and data visualization.

  6. Distance matrices . Tests associated to the relationships between distance matrices : Mantel's Test, Partial Mantel's Test. The problems of Mantel's test. db-RDA analysis. Non-metric multidimensional scaling. Graphical representation and data visualization.

  7. Introduction to geostatistics . Regionalized variable theory . Stochastic models of geological variables. Stationary models. Models with drift.

  8. Variogram concept: structural analysis . Variogram properties. Estimation of the experimental variogram. Identification of spatial anisotropies. Theoretical variograms models. Adjustment of a theoretical model to an experimental variogram

  9. Spatial interpolation by kriging . Main estimation methods by kriging: stationary and non-stationary variables.

  10. Applications of geostatistics to environmental variables.

  11. Introduction to Data Mining . Data mining. Relationship of DM with other disciplines. Phases of Knowledge Discovery in Databases. Challenges for Data Mining. Introduction to the use of RapidMiner software

  12. Attributes selection. Phases of data analysis. Taxonomy of attributes selection methods. Attribute transformation

  13. Data Mining Techniques. Typology of Data Mining Techniques. Taxonomy of Data Mining Techniques. Descriptive methods Predictive methods. Analysis of geo-environmental data with RapidMiner

4. COURSE DESCRIPTION AND TEACHING METHODOLOGY

For a better understanding of the concepts, the whole teaching will occur in the computer classroom. In this way, each theoretical concept will be immediately supported with practical exercises performing by means of different softwares: PAST, R-Studio, SPSS, Stat-graphics, EXCEL, RapidMiner, etc.

Students with special educational needs should contact the Student Attention Service (Servicio de Atención y Ayudas al Estudiante) in order to receive the appropriate academic support

5. ASSESSMENT METHODOLOGY

The theoretical contents will be evaluated through an objective test (35%). The practical contents will be evaluated through a report with the exercises and statistical analyses started by the student in the classroom and completed with their subsequent autonomous work (65%).

To pass the course, it will be necessary to pass both the theoretical content exam and the practical exercises or reports.

6. BOOKLIST
MAIN BOOKLIST:
  • Analysing Ecological Data [Recurso electrónico]. Edition: -. Author: Zuur, Alain F.. Publisher: New York, NY : Springer Science + Business Media, LLC, 2007..
    • Notes: English
     (Library)
  • A beginner's guide to R. Edition: 1st ed.. Author: Zuur, Alain F.. Publisher: New York : Springer, 2009..
    • Notes: English
     (Library)
  • Data mining for the masses . Edition: -. Author: North, Matthew. Publisher: [S.l.] : Global Text Project, cop. 2012.
    • Notes: English
     (Library)
  • Mining geostatistics . Edition: -. Author: Journel, A. G. Publisher: Caldwell, N.J. : Blackburn Press, c2003.
    • Notes: English
     (Library)
  • Data mining [Recurso electrónico] : practical machine learning tools and techniques. Edition: 3rd ed. Author: Witten, I. H. (Ian H.). Publisher: Burlington, MA : Morgan Kaufmann Publishers, c2011.
    • Notes: English
     (Library)
  • Numerical ecology [ [Recurso electrónico]. Edition: 3rd English ed. Author: Legendre, Pierre ( 1946-). Publisher: Amsterdam ; Boston : Elsevier, 2012.
    • Notes: English
     (Library)
  • Statiscs for spatial data. Edition: -. Author: Cressie, Noel A. C.. Publisher: New York: John Wiley & Sons, cop. 1993.
    • Notes: English
     (Library)
  • Experimental design for the life sciences. Edition: 3rd ed.. Author: Ruxton, Graeme D.. Publisher: Oxford ; New York : Oxford University Press, c2010.
    • Notes: English
     (Library)
  • Experimental design and data analysis for biologists. Edition: -. Author: Quinn, Gerry P.. Publisher: Cambridge: Cambridge University Press, 2002.
    • Notes: English
     (Library)
  • Applied geostatistics. Edition: -. Author: Isaaks, Edward H.. Publisher: New York [etc.]: Oxford University, 1989.
    • Notes: English
     (Library)
  • Analysing Ecological Data [Recurso electrónico]. Edition: -. Author: Zuur, Alain F.. Publisher: New York, NY : Springer Science + Business Media, LLC, 2007..
    • Notes: English
     (Library)
ADDITIONAL BOOKLIST:
  • Multivariate geostatistics: an introduction with applications. Edition: 3rd completely rev. ed.. Author: Wackernagel, Hans.. Publisher: Berlin [etc.] : Springer-Verlag, 2003..
    • Notes: English
     (Library)