Universidad de Jaén

Menú local

Guía docente 2012-13 - 13512013 - Ingeniería térmica



TITULACIÓN: Grado en Ingeniería eléctrica
CENTRO: ESCUELA POLITÉCNICA SUPERIOR (JAÉN)
CURSO: 2012-13
ASIGNATURA: Ingeniería térmica
GUÍA DOCENTE
1. DATOS BÁSICOS DE LA ASIGNATURA
NOMBRE: Ingeniería térmica
CÓDIGO: 13512013 CURSO ACADÉMICO: 2012-13
TIPO: Obligatoria
Créditos ECTS: 6.0 CURSO: 2 CUATRIMESTRE: PC
WEB: http://dv.ujaen.es/docencia/goto_docencia_crs_278829.html
2. DATOS BÁSICOS DEL PROFESORADO
NOMBRE: PALOMAR CARNICERO, JOSÉ MANUEL
IMPARTE: Teoría [Profesor responsable]
DEPARTAMENTO: U121 - INGENIERÍA MECÁNICA Y MINERA
ÁREA: 590 - MÁQUINAS Y MOTORES TÉRMICOS
N. DESPACHO: A3 - 015 E-MAIL: jpalomar@ujaen.es TLF: 953212368
TUTORÍAS: https://uvirtual.ujaen.es/pub/es/informacionacademica/tutorias/p/58221
URL WEB: -
ORCID: https://orcid.org/0000-0002-8003-1223
NOMBRE: KHANAFER BASSAM, NABIH
IMPARTE: Teoría
DEPARTAMENTO: U121 - INGENIERÍA MECÁNICA Y MINERA
ÁREA: 590 - MÁQUINAS Y MOTORES TÉRMICOS
N. DESPACHO: 90 - 011 E-MAIL: khanafer@ujaen.es TLF: 953212868
TUTORÍAS: https://uvirtual.ujaen.es/pub/es/informacionacademica/tutorias/p/58280
URL WEB: -
ORCID: https://orcid.org/0000-0001-7509-5364
NOMBRE: TORRES JIMÉNEZ, ELOISA
IMPARTE: Teoría - Prácticas
DEPARTAMENTO: U121 - INGENIERÍA MECÁNICA Y MINERA
ÁREA: 590 - MÁQUINAS Y MOTORES TÉRMICOS
N. DESPACHO: A3 - 013 E-MAIL: etorres@ujaen.es TLF: 953212867
TUTORÍAS: https://uvirtual.ujaen.es/pub/es/informacionacademica/tutorias/p/33551
URL WEB: http://www10.ujaen.es/conocenos/departamentos/ingmec/4809
ORCID: https://orcid.org/0000-0002-9689-1746
3. PRERREQUISITOS, CONTEXTO Y RECOMENDACIONES
PRERREQUISITOS:

No se han establecido requisitos previos para esta asignatura.

CONTEXTO DENTRO DE LA TITULACIÓN:

La asignatura se encuentra integrada dentro de la materia Ingeniería térmica y de fluidos.

Se trata de una asignatura obligatoria integrada en el módulo común a la rama Industrial y que se imparte en el primer cuatrimestre del segundo curso.

RECOMENDACIONES Y ADAPTACIONES CURRICULARES:

Haber superado las asignaturas de Primer Curso. En Especial: Matemáticas I y II y Física I y II

El alumnado que presente necesidades específicas de apoyo educativo, lo ha de notificar personalmente al Servicio de Atención y Ayudas al Estudiante para proceder a realizar, en su caso, la adaptación curricular correspondiente.
4. COMPETENCIAS Y RESULTADOS DE APRENDIZAJE
Código Denominación de la competencia
CB1 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencia; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.
CB2 Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.
CB3 Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería.
CC1 Conocimientos de termodinámica aplicada y transmisión de calor. Principios básicos y su aplicación a la resolución de problemas de ingeniería.
CT1 Capacidad para trabajar, dirigir y gestionar conflictos en un grupo multidisciplinar y/o un entorno multilingüe.
CT4 Capacidad para aplicar nuevas tecnologías incluidas las tecnologías de la información y la comunicación.
 
Resultados de aprendizaje
Resultado 1 Dominio de los conceptos básicos asociados a la termodinámica clásica y a los mecanismos de transferencia de calor (conducción, convección y radiación)
Resultado 2 Identificación de propiedades termodinámicas de sustancias puras y mezclas, a partir del manejo de tablas, diagramas y ecuaciones específicas asociadas
Resultado 3 Cálculo propiedades y características de combustibles para usos térmicos
Resultado 4 Evaluación de ciclos termodinámicos sencillos
Resultado 5 Cálculo de propiedades y características asociadas a la transferencia de calor
Resultado 6 Dominio en la realización de balances energéticos y exergéticos de sistemas
5. CONTENIDOS

TEMA 1: SISTEMAS CERRADOS: PRIMER Y SEGUNDO PRINCIPIO

TEMA 2: ESTUDIO DE GASES PERFECTOS

TEMA 3: ESTUDIO DE VAPORES

TEMA 4: SISTEMAS ABIERTOS: PRIMER Y SEGUNDO PRINCIPIO

TEMA 5: ANÁLISIS EXERGÉTICO

TEMA 6: RELACIONES TERMODINÁMICAS

TEMA 7: MEZCLAS DE GASES SIN REACCIÓN Y PSICROMETRÍA

TEMA 8: CICLOS TERMODINÁMICOS DE AIRE

TEMA 9: CICLOS TERMODINÁMICOS DE VAPOR

TEMA 10: TRANSMISIÓN DE CALOR

TEMA 11: CONDUCCIÓN

TEMA 12: CONVECCIÓN. CORRELACIONES EMPÍRICAS

TEMA 13: RADIACIÓN

Tema 1: Sistemas cerrados: primer y segundo principio.- 1.1.- Noción de Sistema. 1.2.- Equilibrio térmico y mecánico de los sistemas. 1.3.- Clasificación de los sistemas. 1.4.- Propiedades de un sistema. 1.5 Estados de equilibrio. Transformaciones y procesos. 1.6.- Clases de procesos. 1.7.- Tipos de irreversibilidades. 1.8.- Concepto de calor y energía interna. 1.9.- Primer principio en sistemas cerrados. 1.10.- Trabajo de un sistema cerrado. 1.11.- Entalpía. 1.12.- Concepto de trabajo útil y efectivo. 1.13.- Concepto de máquina térmica y máquina frigorífica. 1.14.- Máquina de Carnot. 1.15.- Segundo principio de la termodinámica. 1.16.- Flujo de entropía y entropía generada. 1.17.- Disponibilidad de un sistema cerrado.

  Tema 2: Estudio de gases perfectos.- 2.1.- Capacidad calorífica y calor específico. 2.1.1.- Valor del calor específico según la transformación del sistema. 2.2.- Calores específicos de los gases perfectos. 2.2.1.- Relación entre los calores específicos de los gases perfectos. 2.3.- Capacidades caloríficas medias. 2.3.1.- Valoración de  . 2.4.- Valoración de la entalpía para gases perfectos. 2.5.- Valoración de la energía interna. 2.6.- Valoración de la entropía. 2.7.- Estudio de transformaciones en gases perfectos.

  Tema 3: Estudio de vapores. 3.1.- Cambios de fase en sistemas de un componente. 3.2.- Vapor húmedo, vapor saturado y vapor seco o recalentado. 3.3.- Diagrama entrópico T-s 3.3.1.- Estudio de transformaciones en el diagrama T-s. 3.3.2.- Ciclo de Carnot en el diagrama T-s. 3.3.3.- Ciclo de máximo rendimiento. 3.3.4.- Rendimiento térmico en ciclos reversibles. 3.3.5.- Diagrama T-s para el vapor de agua. 3.4.- Diagrama h-s para vapor de agua.

  Tema 4: Sistemas abiertos: primer y segundo principio. 4.1.- Flujo permanente. 4.2.- Conservación de la masa. 4.3.- Conservación de la energía. 4.4.- Válvulas de estrangulamiento. 4.5.- Trabajo reversible de un flujo permanente. 4.6.- Energía disponible de un flujo. 4.7.- Exergía. 4.8.- Toberas y Difusores. 4.8.1.- Velocidad del sonido en un gas. Número de Mach. 4.8.2.- Flujo adiabático. 4.8.3.- Flujo isentrópico. Variación de la velocidad del fluido con el área del flujo.  4.8.4.- Toberas y difusores. 4.8.5.- Relaciones teóricas entre propiedades de entrada y cuello para una tobera convergente-divergente. 4.8.6.- Flujo a través de Toberas y Difusores reales.

  Tema 5: Análisis exergético.- 5.1.- Introducción. 5.2.- Exergía. 5.2.1.- Ambiente. 5.2.2.- Estado muerto. 5.2.3.- Cálculo de la exergía. 5.2.4.- Otros aspectos de la exergía. 5.3.- Balance de exergía para sistemas cerrados. 5.3.1.- Desarrollo del balance de exergía. 5.4.- Exergía de flujo. 5.5.- Balance de exergía para volúmenes de control. 5.6.- Eficiencia termodinámica. 5.6.1.- Eficiencias exergéticas de algunos equipos.

Tema 6: Relaciones Termodinámicas.-6.1.- Introducción . 6.2.- Relaciones diferenciales parciales.  6.3.- Las relaciones de Maxwell. 6.3.1.- Relaciones entre propiedades a partir de diferenciales exactas. 6.4.- Ecuación de Clapeyron. 6.5.-Relaciones generales para du, dh, ds, c v y c p en regiones de una sola fase. 6.5.1.- Cambios de la energía interna. 6.5.2.- Cambios de entalpía. 6.5.3.- Cambios en la entropía. 6.5.4.- Calores específicos c p  y  c v. 6.6.- El coeficiente de Joule-Thomson. 6.7.- Factor de compresibilidad. 6.8.- Variación de entalpía, energía interna y entropía de gases ideales. 6.8.1.- Cambios de entalpía de gases reales. 6.8.2.- Cambios de energía interna de gases reales. 6.8.3.- Cambios de entropía de gases reales. 6.9.- Otras ecuaciones de estado.

Tema 7: Mezclas de gases sin reacción y Psicrometría .- 7.1.- Mezcla de gases sin reacción. 7.2.-Composición de una mezcla de gases: masa y fracción molar. 7.3.- Comportamiento p-v-T de mezclas de gases: ideales y reales. 7.4.- Propiedades de mezcla de gases: ideales y reales 7.5.- Psicrometría. Mezcla de gas-vapor. 7.6.- Aire seco y atmosférico. 7.7.- Humedad específica y relativa del aire. 7.8.- Temperatura de punto de rocío. 7.9.- Saturación adiabática y temperatura de bulbo húmedo. 7.10.- Diagrama psicrométrico. 7.11.- Análisis de procesos de acondicionamiento de aire. 7.11.1.- Calentamiento y enfriamiento simples. 7.11.2.- Calentamiento con humidificación. 7.11.3.- Enfriamiento con deshumidificación. 7.11.4.- Enfriamiento evaporativo. 7.11.5.- Mezcla adiabática de corrientes de aire húmedo. 7.11.6.- Torres de refrigeración.

  Tema 8: Ciclos de potencia de gas.- 8.1.- Conceptos generales. 8.2.- El Ciclo de aire estándar. 8.3.- Motores de combustión interna alternativos. 8.3.1.- Ciclo operativo del motor de 4 tiempos. 8.3.2.- Ciclo ideal OTTO. 8.3.3.- Ciclo ideal DIESEL. 8.3.4.- Ciclo ideal MIXTO o de SABATHE. 8.4.- Turbinas de gas. 8.4.1.- Descripción de los motores de turbinas de gas: de ciclo abierto simple; de ciclo cerrado. 8.4.2.- Ciclo Brayton ideal de aire. 8.4.3.- Ciclo Brayton real de aire. 8.5.- Otros ciclos en los motores de turbina de gas. 8.5.1.- Ciclo Ericsson. 8.5.2.- Ciclo Stirling.

  Tema 9: Ciclos de potencia de vapor y ciclos de refrigeración.- 9.1.- Introducción. 9.2.- Ciclo de Carnot para vapor. 9.3.- Análisis energético del ciclo ideal. 9.4.- Mejora del rendimiento del ciclo de Rankine. 9.4.1.- Aumento de la temperatura media de absorción de calor. 9.4.2.- Disminución de la temperatura media de cesión de calor. 9.5.- Ciclo irreversible de Rankine. 9.6.- Ciclo mixto turbina de gas - turbina de vapor. 9.7.- La refrigeración: Máquina frigorífica y bomba de calor. 9.7.1.- Máquina frigorífica. 9.7.2.- Bomba de calor. 9.7.3.- Coeficientes de eficiencia. 9.8.- Ciclo de Carnot invertido. 9.9.- Ciclos en máquinas frigoríficas de vapor. 9.9.1.- Ciclo práctico en la máquina frigorífica de vapor (Rankine invertido). 9.9.2.- Mejoras del rendimiento. 9.9.2.1.- Subenfriamiento mediante agua de refrigeración. 9.9.2.2.- Subenfriamiento mediante intercambiador de calor. 9.9.3.- Pérdidas de exergía en la instalación frigorífica.

  Tema 10: Conceptos básicos de transmisión de calor.- 10.1.- Introducción. 10.2.- Conducción. 10.3.- Convección. 10.4.- Radiación. 10.5.- Requerimientos de conservación de la energía. 10.5.1.- Conservación de la energía para un volumen de control. 10.5.2.- Balance de energía en una superficie.10.6.- Análisis de problemas de transferencia de calor.

  Tema 11: Conducción.- 11.1.- Introducción. 11.2.- El modelo para la conducción. 11.2.1.- Ecuación de difusión de calor. 11.2.2.- Condiciones iniciales y de contorno.  11.3.- Conducción unidimensional de estado estable. 11.3.1.- La pared plana. 11.3.1.1.- Distribución de temperatura. 11.3.1.2.- Resistencia térmica. 11.3.1.3.- Pared compuesta. 11.3.1.4.- Resistencia de contacto. 11.3.2.- Análisis de conducción con un método alternativo. 11.3.3.- Sistemas radiales. 11.3.3.1.- Pared cilíndrica. 11.3.3.2.- Pared esférica. 11.3.4.- Conducción con generación de energía térmica. 11.3.4.1.- La pared plana. 11.3.4.2.- Sistemas radiales. 11.3.5.- Transferencia de calor en superficies extendidas. 11.3.5.1.- Análisis de conducción general. 11.3.5.2.- Aletas de área de sección transversal uniforme. 11.3.5.3.- Aletas de área de sección transversal no uniforme. 11.3.5.4.- Eficiencia global de la superficie.  

 Tema 12: Convección. Correlaciones empíricas.- 12.1.- Transferencia de calor por convección. 12.2.- Capas límite de convección. 12.2.1.- Capa límite de velocidad o hidrodinámica. 12.2.2.- Capa límite térmica. 12.2.3.- Capa límite de concentración. 12.2.4.- Significado de las capas límite.12.3.- Flujo laminar y turbulento. 12.4.- Correlaciones empíricas para convección. Introducción. 12.5.- Ecuaciones Diferenciales de la convección. 12.5.1.- Convección forzada. 12.5.2.- Convección libre. 12.5.3.- Transmisión de calor en los cambios de estado. 12.6.- Correlaciones empíricas en convección. 12.6.1.- Flujo externo, convección forzada, sin cambio de fase. 12.6.2.- Flujo interno, convección forzada, sin cambio de fase. 12.6.3.- Convección libre, sin cambio de estado. 12.6.3.1.- Circulación alrededor de placas y tubos verticales (flujo externo). 12.6.3.2.- Circulación alrededor de placas horizontales e inclinadas (flujo externo). 12.6.3.3.- Circulación alrededor de cilindros horizontales (flujo externo).  12.6.3.4.- Convección natural entre cilindros concéntricos. 12.6.3.5.- Condensación laminar.

  Tema 13: Radiación.- 13.1.- Introducción.13.2.- Intensidad de la radiación. 13.2.1.- Definiciones. 13.2.2 Relación con la emisión. 13.2.3 Relación con la irradiación. 13.2.4 Relación con la radiosidad. 13.3.- Radiación de un cuerpo negro. 13.3.1 Distribución de Planck. 13.3.2 Ley de desplazamiento de Wien. 13.3.3 Ley de Stefan-Boltzmann. 13.3.4 Emisión de banda. 13.4.- Emisión superficial. 13.5. Absorción, reflexión y Transmisión superficiales. 13.5.1 Absortividad. 13.5.2 Reflectividad. 13.5.3 Transmisividad. 13.5.4 Consideraciones especiales. 13.6. Ley de Kirchhoff. 13.7. Superficie gris.

6. METODOLOGÍA Y ACTIVIDADES
 
ACTIVIDADES HORAS PRESEN­CIALES HORAS TRABAJO AUTÓ­NOMO TOTAL HORAS CRÉDITOS ECTS COMPETENCIAS (códigos)
A1 - Clases expositivas en gran grupo
  • M1 - Clases magistrales
  • M2 - Exposición de teoría y ejemplos generales
45.0 67.5 112.5 4.5
  • CB1
  • CB2
  • CC1
A2 - Clases en grupos de prácticas
  • M10 - Aulas de informática
  • M6 - Actividades practicas
  • M9 - Laboratorios
10.0 15.0 25.0 1.0
  • CB1
  • CB2
  • CB3
  • CT4
A3 - Tutorías colectivas/individuales
  • M14 - Supervisión de trabajos dirigidos
  • M15 - Seminarios
  • M17 - Aclaración de dudas
  • M18 - Comentarios de trabajos individuales
5.0 7.5 12.5 0.5
  • CB3
  • CT1
TOTALES: 60.0 90.0 150.0 6.0  
 
INFORMACIÓN DETALLADA:

La asignatura se desarrollará mediante:

Clases magistrales. Los conceptos básicos de la asignatura se presentaran mediante presentaciones multimedia, exposiciones teóricas, y realización de ejemplos.

Prácticas. Determinados contenidos se explorarán mediante actividades que implican la aplicación práctica de conocimientos.

De forma orientativa se realizarán 5 prácticas, cada una con una duración de 2 h:

Tutorías colectivas. Esta actividad se organiza en seminarios cortos donde mediante problemas se profundizará en algunos de los temas estudiados en las clases magistrales, y también se resolverán dudas de los alumnos.

7. SISTEMA DE EVALUACIÓN
 
ASPECTO CRITERIOS INSTRUMENTO PESO
Asistencia y/o participación en actividades presenciales y/o virtuales ASISTENCIA A SESIONES TEÓRICAS Y PRÁCTICAS PARTICIPACIÓN ACTIVA EN CLASE HOJAS DE FIRMAS COMENTARIOS DEL PROFESOR 5.0%
Conceptos teóricos de la materia DOMINIO DE CONOCIMIENTOS TEÓRICOS Y OPERATIVOS DE LA MATERIA EXAMEN TEÓRICO (CONCEPTOS Y PROBLEMAS) 80.0%
Realización de trabajos, casos o ejercicios ENTREGA DE CASOS (PRÁCTICAS Y TRABAJOS DIRIGIDOS) BIEN RESUELTOS. EN CADA TRABAJO SE ANALIZARÁ LA ESTRUCTURA, CALIDAD DE LA DOCUMENTACIÓN, ORIGINALIDAD, ORTOGRAFÍA Y PRESENTACIÓN EVALUACIÓN DE MEMORIAS DE PRÁCTICAS Y TRABAJOS DIRIGIDOS 15.0%
El sistema de calificación se regirá por lo establecido en el RD 1125/2003 de 5 de septiembre por el que se establece el sistema europeo de créditos y el sistema de calificaciones en la titulaciones universitarias de carácter oficial
INFORMACIÓN DETALLADA:

PROCEDIMIENTO DE EVALUACIÓN

 La evaluación se realizará al final del cuatrimestre mediante un examen que constará de dos partes: una teórica y/o cuestiones, cuyo valor será de 4 puntos y otra de problemas cuyo valor será de 6 puntos. Para aprobar el examen de la asignatura será necesario superar el aprobado tanto en la parte teórica como en la de problemas. Si esta condición se cumple, la nota final será la suma de ambas.Este examen tiene un peso en la calificación global de la asignatura de un 80%.

Como bloque independiente, las prácticas de laboratorio se puntúan sobre un máximo de 1,5 puntos y asistencia y participación en clase sobre 0,5 puntos. La nota obtenida en prácticas y por asistencia   ÚNICAMENTE se sumará a la calificación del examen si la calificación del examen es SUPERIOR O IGUAL A 5.

 La presentación de los trabajos prácticos es obligatoria  para la superación de la asignatura.

8. DOCUMENTACIÓN / BIBLIOGRAFÍA
ESPECÍFICA O BÁSICA:
  • Termodinámica. Edición: 5ª ed.. Autor: Çengel, Yunus A. Editorial: México ; Madrid [etc.] : McGraw Hill , imp. 2006  (C. Biblioteca)
  • Fundamentos de termodinámica técnica. Edición: 2ª ed., reimp.. Autor: Moran, Michael J.. Editorial: Barcelona : Reverté, 2011  (C. Biblioteca)
  • Fundamentos de transferencia de calor. Edición: 4ª ed. Autor: Incropera, Frank P.. Editorial: Máxico [etc.]: Pearson, cop.1999  (C. Biblioteca)
  • Problemas resueltos de calor y frío industrial I. Edición: 1ª ed., 1ª reimp. Autor: Andrés Rodríguez-Pomatta, Mª Isabel. Editorial: Madrid: UNED, 2001  (C. Biblioteca)
  • Problemas resueltos de ingeniería térmica. Edición: -. Autor: Cruz Peragón, Fernando. Editorial: Jaén: Universidad de Jaén, Servicio de Publicaciones e Intercambio Científico, D.L. 1999  (C. Biblioteca)
GENERAL Y COMPLEMENTARIA:
  • Problemas de ingeniería térmica. Edición: -. Autor: Broatch Jacobi, Alberto. Editorial: Valencia: Universidad Politécnica, Servicio Publicaciones, 2008  (C. Biblioteca)
  • Problemas de calor y frío industrial. Edición: 2ª ed. Autor: López González, Luis María. Editorial: [Logroño]: Universidad de La Rioja, Servicio de Publicaciones, cop. 2000  (C. Biblioteca)
  • Problemas resueltos de motores térmicos y turbomáquinas térmicas. Edición: 2ª ed.. Autor: Muñoz Domínguez, Marta. Editorial: Madrid: Universidad Nacional de Educación a Distancia, 2008  (C. Biblioteca)
  • Transferencia de calor y masa: un enfoque práctico. Edición: 3ª̇ ed.. Autor: Çengel, Yunus A.. Editorial: México [etc.]: McGraw Hill, 2007  (C. Biblioteca)
9. CRONOGRAMA (primer cuatrimestre)
 
Semana A1 - Clases expositivas en gran grupo A2 - Clases en grupos de prácticas A3 - Tutorías colectivas/individuales Trabajo autónomo Observaciones
Nº 1
24 - 30 sept. 2012
3.00.01.0 0.0 PRESENTACIÓN Y TEMA 1
Nº 2
1 - 7 oct. 2012
3.00.01.0 0.0 TEMA 1
Nº 3
8 - 14 oct. 2012
3.01.00.0 0.0 TEMA 2
Nº 4
15 - 21 oct. 2012
3.01.00.0 0.0 TEMA 3
Nº 5
22 - 28 oct. 2012
3.01.00.0 0.0 TEMA 4
Nº 6
29 oct. - 4 nov. 2012
3.01.00.0 0.0 TEMA 5
Nº 7
5 - 11 nov. 2012
3.01.00.0 0.0 TEMA 6
Nº 8
12 - 18 nov. 2012
3.01.00.0 0.0 TEMA 7
Nº 9
19 - 25 nov. 2012
3.01.00.0 0.0 TEMA 8
Nº 10
26 nov. - 2 dic. 2012
3.01.00.0 0.0 TEMA 9
Nº 11
3 - 9 dic. 2012
3.01.00.0 0.0 TEMA 10 y 11
Nº 12
10 - 16 dic. 2012
3.01.00.0 0.0 TEMA 11 y 12
Nº 13
17 - 21 dic. 2012
3.00.01.0 0.0 TEMA 12 y 13
Período no docente: 22 dic. 2012 - 6 ene. 2013
Nº 14
7 - 11 ene. 2013
3.00.01.0 0.0 TEMA 13
Total Horas 42.0 10.0 4.0 0.0